## 4 Year Bachelor of Science/ Arts (MATHEMATICS) CBCS

### List of Major Core Courses (MJC):

| Sl.<br>No. | Sem  | Course<br>Code | Name of the Course                          | Credits | Marks |
|------------|------|----------------|---------------------------------------------|---------|-------|
| 1.         | I    | MJC-01         | Algebra                                     | 6       | 100   |
| 2.         | II   | MJC-02         | Calculus & Geometry                         | 6       | 100   |
| 3.         | III  | MJC-03         | Real Analysis                               | 5       | 100   |
| 4.         | III  | MJC-04         | Ordinary Differential Equations             | 4       | 100   |
| 5.         | IV   | MJC-05         | Theory of Real Functions                    | 5       | 100   |
| 6.         | IV   | MJC-06         | Group Theory                                | 5       | 100   |
| 7.         | IV   | MJC-07         | Partial Differential Equations              | 5       | 100   |
| 8.         | V    | MJC-08         | Ring Theory and Linear Algebra-I            | 5       | 100   |
| 9.         | V    | MJC-09         | Multivariate Calculus                       | 5       | 100   |
| 10.        | VI   | MJC-10         | Complex Analysis                            | 4       | 100   |
| 11.        | VI   | MJC-11         | Metric Space                                | 5       | 100   |
| 12.        | VI   | MJC-12         | Riemann Integration and Series of Functions | 5       | 100   |
| 13.        | VII  | MJC-13         | Ring Theory and Linear Algebra-II           | 5       | 100   |
| 14.        | VII  | MJC-14         | Research Methodology                        | 5       | 100   |
| 15.        | VII  | MJC-15         | Numerical Methods                           | 6       | 100   |
| 16.        | VIII | MJC-16         | Mathematical Finance                        | 4       | 100   |

(14/06/23

July 16 23

51/06/2023

# 4-Years Bachelor of Science/Arts (MATHEMATICS) CBCS Syllabus

#### Semester-I

MJC-01: Algebra (06 credits) (Lecture: 60)

**Course Objectives:** The primary objective of this course is to introduce the basic tools of theory of equations, complex numbers, number theory and matrices to understand their linkage to the real-world problems.

Course Learning Outcomes: This course will enable the students to:

- i) Employ De Moivre's theorem in a number of applications to solve numerical problems.
- ii) Apply Euclid's algorithm and backwards substitution to find greatest common divisor.
- iii) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix, using rank.

#### **Course Contents:**

Unit 1 (Lecture: 10)

Polar representation of complex numbers, De -Moivre's theorem and its applications, Logarithms of complex quantities, Hyperbolic functions, Gregory series, Summation of series, Resolution into factors.

Unit 2 (Lecture: 12)

Cartesian product of sets, Equivalence relations, partition, partial and total order relation Functions, Composition of functions, Invertible functions, Cardinality of a set, Countable and Uncountable sets, Cantor's theorem,

Unit 3 (Lecture: 12)

Well-ordering property of positive integers, Division algorithm, Euclidean algorithm, Fundamental Theorem of Arithmetic, Modular arithmetic and basic properties of congruences, Principle of mathematical induction.

Unit 4 (Lecture: 12)

Matrices, Operation on Matrices, Kinds of matrices, Transpose, symmetric & skew symmetric Matrices, Hermitian, skew Hermitian Matrices, Adjoint and Inverse of a matrix, orthogonal matrix, Solution of a system of linear equations by matrix methods. Echelon forms, Rank of a matrix.

5 mints

1 JULY TEN

3N 6 7000

Unit 5 (Lecture: 14)

Fundamental theorem of algebra, Relation between roots and coefficients of a polynomial equation, Symmetric Function of roots, Transformation of equation, Descartes rule of signs, Solution of Cubic equation (Cardon's method) and bi quadratic equation (Euler's method).

#### References:

- 1. Dickson, Leonard Eugene (1922). First Course in The Theory of Equations. John Wiley & Sons, Inc. New York.
- **2.** Kolman, Bernard, & Hill, David R. (2001). *Introductory Linear Algebra with Applications* (7<sup>th</sup>ed.). Pearson Education, Delhi. First Indian Reprint 2003.

#### **Additional Readings:**

- 1. Andrilli, Stephen, & Hecker, David (2016). *Elementary Linear Algebra* (5<sup>th</sup>ed.). Academic Press, Elsevier India Private Limited.
- 2. Burton, David M. (2007). *Elementary Number Theory* (7<sup>th</sup>ed.). Tata Mc-Graw Hill Edition, Indian Reprint.
- 3. K.K.Jha, Advanced Set Theory.Nav BharatPrakashan Patna
- 4. M.L.Khanna, Theory of Equations, Jai Prakash Nath& Co. Merrut (U.P.)
- 5. Lalji Prasad, Matrices, Paramount Publications Patna
- 6. Dasgupta, Trigonometry, Bharti Bhawan Patna.