<u>SEMESTER – I</u>

MDC-1 (T) : Inorganic Chemistry Atomic Structure and Chemical Bonding and Fundamentals of organic Chemistry

Course Objective

The Objective of CBCS based four year undergraduate Programme (FYUGP) in Chemistry Hons for Semester I & II, Specially for Major & Minor course is to provide the clear conception and understanding about theory and practical course mentioned in the syllabus.

Unit	Topics to be covered	No. of Lectures		
1	Atomic Structure: Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure. Significance of quantum numbers, orbital angular momentum and quantum numbers m_i and m_s . Shapes of s , p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (m_s).			
	Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configuration, Hund's, Pauli's and Aufbau's principle.			
2	Chemical Bonding and Molecular Structure Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born- Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character. <i>Covalent bonding:</i> VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements. Concept of resonance and resonating structures in	06		
	various inorganic and organic compounds.			
	Section B: Organic Chemistry-1	0.1		
3	Fundamentals of Organic Chemistry Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals. Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule.	04		
4	Stereochemistry Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; <i>cis - trans</i> nomenclature; CIP Rules: R/ S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto	04		
	two C=C systems). TOTAL	20		

KSL-04 14.6.23

Suggested Readings :

- 19. Advanced Inorganic Chemistry, F.A. Cotton, G. Wilkinson.
- 20. Concise Inorganic Chemistry, J.D. Lee, Blackwell Science, 2001.
- 21. Inorganic Chemistry, J.E. Huheey, E.A. Keiter and R.I. Keiter, Pearson Education Asia, 2000.
- 22. Inorganic Chemistry, ELBS 2nd Edition, D.F. Shriver, P.W. Atkins and C.H. Langford. Oxford University Press 2002.
- 23. Principles of Inorganic Chemistry. B.R. Puri, L.R. Sharma, Jauhar S.P., S.N. Chand & Co.
- 24. Inorganic Chemistry, 3rd Edition (ISE) A.G. Sharpe Addison Wesley.

Reference Books:

- 25. □ J. D. Lee: A new Concise Inorganic Chemistry, E L. B. S.
- 26. C F. A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley.
- 27. □ Douglas, McDaniel and Alexader: *Concepts and Models in Inorganic Chemistry*, 28. John Wiley.
- 29. D James E. Huheey, Ellen Keiter and Richard Keiter: Inorganic Chemistry: Principles
- 30. of Structure and Reactivity, Pearson Publication.
- 31. □ T. W. Graham Solomon: Organic Chemistry, John Wiley and Sons.
- 32. □ Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient Longman.
- 33. □ E. L. Eliel: Stereochemistry of Carbon Compounds, Tata McGraw Hill.
- 34. □ I. L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.
- 35. □ R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall.
- 36. □ Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand

MDC-1(P): Inorganic and Organic Chemistry Lab

(Practical : 1 Credit)

Practical- 1. Inorganic Chemisry Practical

- b. Preparation and standardization of solutions.
- d. Permangnatometry / dichromatry.
- e. Acidimetry / Alkalimetry.

Practical- 2. Organic Chemisry Practical

Organic Practical : Detection of elements, separation and purification of Organic Compounds.

Suggested Readings :

- 6. Practical inorganic chemistry : Shikha Gulati and J. L. Sharma
- 7. Practical Chemistry : Dr O .P. Pandey , D.N. Bajpayi& ,Giri.
- 8. Quantitative Chemical analaysis: A.I. Vogel, Prentice Hall Publication.
- 9. Text book of practical Organic Chemistry: A.I. Vogal, Prentice Hall Publication.
- 10. Practical Organic Chemistry, F.G. Mann & B.C. Saunders, Orient long man.

	750	(1)
	1.2	156-0
ACL	sta	01.20
627-	2	N'O
	(\mathbf{C})	Itididcinlin

(C) Multidisciplinary Courses to be offered

Sl. No.	Sem	Type of Course	Name of Course	Credits	Marks
1.	Ι	MDC-1	To be selected from the basket	3	100
2.	II	MDC-2	To be selected from the basket	3	100
3.	III	MDC-3	To be selected from the basket	3	100

13

Sub Total = 09